- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, HY (2)
-
Berger-Wolf, T (1)
-
Crossman, JC (1)
-
Fuchs, GD (1)
-
Gu, Y (1)
-
Luo, W (1)
-
McCullian, BA (1)
-
Mueller, EJ (1)
-
Pahuja, V (1)
-
Sharma, V (1)
-
Stewart, C (1)
-
Tu, CH (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We use a bulk acoustic wave resonator to demonstrate coherent control of the excited orbital states in a diamond nitrogen-vacancy ( ) center at cryogenic temperature. Coherent quantum control is an essential tool for understanding and mitigating decoherence. Moreover, characterizing and controlling orbital states is a central challenge for quantum networking, where optical coherence is tied to orbital coherence. We study resonant multiphonon orbital Rabi oscillations in both the frequency and time domain, extracting the strength of the orbital-phonon interactions and the coherence of the acoustically driven orbital states. We reach the strong-driving limit, where the physics is dominated by the coupling induced by the acoustic waves. We find agreement between our measurements, quantum master-equation simulations, and a Landau-Zener transition model in the strong-driving limit. Using perturbation theory, we derive an expression for the orbital Rabi frequency versus the acoustic drive strength that is nonperturbative in the drive strength and agrees well with our measurements for all acoustic powers. Motivated by continuous-wave spin-resonance-based decoherence protection schemes, we model the orbital decoherence and find good agreement between our model and our measured few-to-several-nanoseconds orbital decoherence times. We discuss the outlook for orbital decoherence protection. Published by the American Physical Society2024more » « less
-
Pahuja, V; Luo, W; Gu, Y; Tu, CH; Chen, HY; Berger-Wolf, T; Stewart, C (, arXiv)
An official website of the United States government

Full Text Available